FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR

May 18-19, 2016 Cincinnati, OH

Commissioning Otto Van Geet, PE NREL

Hosted by:

Why Commission?

- Commissioning (Cx) of systems has its roots in ship building
 - first used to ensure a ship was seaworthy and ready for service.
- Cx is a specialized application of quality assurance.
- Good cx involves extensive testing and:
 - early planning,
 - continuous coordination,
 - comprehensive documentation, and
 - thorough O&M training.

An analogy to a ship's sea trials or "shake-down" cruise

Commissioning Background

The goals of commissioning are to:

- Improve energy performance and minimize energy consumption.
- Reduce operating costs.
- Ensure adequate O&M staff orientation and training.
- Improve systems documentation.

– Specific to UESC:

- "Performance assurance" rather than "savings guarantee" assists keeping costs reasonable and appropriate to the project size/ ECM
- Use a consistent set of procedures/activities to monitor, adjust, and report on ECM performance.
- utility/agency monitoring, comparison to baseline, makes improvement recommendations, and agency makes adjustments

Role of Commissioning within a long-term Performance Assurance Plan

Commissioning Comes in a **Ongoing** Number of operation & commissioning **Styles** · Oberening Experience Technical steps and techniques **UESC Existing Building** Field Experience (Retro) **ECM Set**

Design Intent

Commissioning

commissioning

Cx Activities for UESC

- Re-commissioning
 - Performed 5 to 10 years after previously commissioned
 - Used to help identify deferred maintenance
- Retro-commissioning (RCx)
 - Performed to existing buildings not previously commissioned
 - Usually instigated due to high energy bills or poor occupant comfort
- Monitoring-Based Commissioning (MBCx)
- Continuous-commissioning (CCx)
 - Ongoing process to resolve operating problems, optimize energy use and identify retrofits

Construction Commissioning Activity

Construction Commissioning Activity

Construction Phase Commissioning Activity

Construction Commissioning Activity

Responsibility Shifting from Utility to Agency - Commissioning

Agency fully responsible phase - Commissioning

Commissioning Activity

Time

MBCx & AFDD Definitions

 Monitoring-Based Commissioning (MBCx): Use monitored data to assess equipment operation (new or existing buildings), typically ongoing

 Automated Fault Detection and Diagnostics (AFDD):

Analytical software that detects specific issues in operation, enabling MBCx.

Benefits

Figure 1. MBCx provides three streams of additional energy savings relative to RCx.

Studies show that 25% of RCx savings on average can be lost over 4 years without ongoing attention.

^{*}Lawrence Berkeley National Laboratory, June 2009 report - Monitoring-Based Commissioning: Benchmarking Analysis of 24 UC/CSU/IOU Projects

RCx Issues Identified

Issues/opportunities that can be detected:

Air-Side Opportunities

Equipment scheduling, ventilation/economizer control optimization, pressurization and temperature optimization

Duct static pressure and discharge air temperature optimization, morning warm-up control, minimum VAV box flow reduction

Water Side Opportunities

Temperature optimization (chilled water, condenser water, heating water), water-side economizer control, pump and pressure control, equipment staging

Fault Detection & Diagnostics (FDD)

Detailed analytics down to the equipment level

Analytics provide information for action

Cloud based or local software

Fault Detection & Diagnostics (FDD)

- Data points constantly monitored and stored
- Programmed "rules" automatically detect "faults" or issues over all time
- One way communication provides information that requires human action

Fault Detection & Diagnostics (FDD)

Growing number of tools, not as many as EIS

Examples:

- Purchased as a license: Sky Foundry SkySpark
- SAAS cloud hosted: Climetrics Analytika,
 Ezenics, KGS Buildings Clockworks, SciEnergy
 EnergyScape and more...
- Built in to BAS: Growing number of options

Example Fault - Scheduling

Example rule: "AHU ON During Scheduled Unocc" (Equipment ON when it should be OFF)

AHU-1-1 operating 24/7 from 30%-50% fan speed

